

TBV

Balancing valves

Terminal valve

TBV

The TBV terminal valve delivers accurate hydronic balancing.

Key features

- > Handwheel
 - User-friendly handwheel for easy balancing and shut-off.
- > Self-sealing measuring points For simple, accurate balancing.

> AMETAL®

Dezincification resistant alloy that guarantees a longer valve lifetime, and lowers the risk of leakage.

Technical description

Applications:

Heating and cooling systems.

Functions:

Balancing Pre-setting Measuring Shut-off

Dimensions:

DN 15-20

Pressure class:

PN 16

Temperature:

Max. working temperature: 120°C Min. working temperature: -20°C

Material:

Valve body: AMETAL®
Seat seal: Valve plug of EPDM
Spindle seal: EPDM O-ring
Valve insert: PPS (polyphenylsulphide)

Return spring: Stainless steel

Spindle: AMETAL® Handwheel: Polyamide

Nipple: AMETAL®

AMETAL® is the dezincification resistant alloy of IMI Hydronic Engineering.

Marking:

Body: TA, PN 16/150, DN, inch size and flow direction arrow.

Identification ring on measuring point.

Sizing

When Δp and the design flow are known, use the formula to calculate the Kv-value.

$$Kv = 0.01 \frac{q}{\sqrt{\Delta p}} \qquad q \text{ I/h, } \Delta p \text{ kPa}$$

$$\mathsf{Kv} = 36 \; \frac{\mathsf{q}}{\sqrt{\Delta \mathsf{p}}} \qquad \mathsf{q} \; \mathsf{l/s}, \Delta \mathsf{p} \; \mathsf{kPa}$$

Installation

*) Control valve

Setting

Setting of a valve for a given pressure drop, eg corresponding to position 4 is done as follows:

- 1. Check that the handwheel is fully opened (fig A).
- **2.** Push the handwheel downwards and turn the scale (fig B) so that position 4 is pointing at the index* of the valve body (fig C).
- 3. Release the handwheel.

The valve is now set.

There is a diagram for every valve size that shows the flow for different pressure drops and settings.

Closing / Opening

Close: Turn the handwheel clockwise until stop. Open: Turn the handwheel unclockwise until stop

Note: The handwheel must only be either fully opened or fully closed.

Noise

The following conditions must be fulfilled in order to avoid noise in the heating system:

- Flows correctly balanced
- The water in the system must have been de-aerated
- Circulation pumps which do not give too high differential pressure (alternative use a differential pressure controller, e.g. STAP).

The maximum recommended pressure drop in order to aviod noise: 30 kPa = 0.3 bar.

Measuring accuracy

Flow deviation at different settings

Try to avoid mounting taps and pumps, immediately before the valve.

*) Position

Diagram TBV LF, DN 15

Position	1	2	3	4	5	6	7	8	9	10
Kv	0,05	0,15	0,22	0,26	0,31	0,41	0,53	0,68	0,74	0,90

Recommended setting: Position 3-10

Diagram TBV NF, DN 15

Position	1	2	3	4	5	6	7	8	9	10
Kv	0,22	0,33	0,45	0,50	0,60	0,82	0,99	1,1	1,4	1,8

Recommended setting: Position 3-10

Diagram TBV NF, DN 20

kPa 60

Position	1	2	3	4	5	6	7	8	9	10
Kv	0,40	0,53	0,67	0,82	1,0	1,3	1,7	2,4	3,0	3,4

Recommended setting: Position 3-10

Articles

Female threads											
DN	D	L	н	Kvs	Kg	EAN	Article No				
TBV LF, low flow											
15	G1/2	81	66	0,90	0,34	7318793961303	52 137-115				
TBV NF, normal flow											
15	G1/2	81	66	1,8	0,34	7318793961709	52 138-115				
20	G3/4	91	62	3,4	0,40	7318793962102	52 138-120				

 $Kvs = m^3/h$ at a pressure drop of 1 bar and fully open valve.

TBV with female thread can be connected to smooth pipes with KOMBI compression coupling. See catalogue leaflet KOMBI.

